
Abstract

This study investigates the impact of climate shocks 
on Indian agriculture and evaluates the presence of a 
climate-smart agricultural policy. Using four econometric 
models—Conditional Logit, Nested Logit, Nested CES 
Climate-Smart Model, and Spatial Error Model—the 
analysis reveals that extreme temperatures and erratic 
rainfall significantly affect agricultural productivity. 
Findings highlight regional disparities in adaptation and 
policy inefficiencies in mitigating climate risks. The study 
underscores the need for a structured, region-specific 
climate-smart strategy, integrating sustainable practices, 
precision farming, and financial support to enhance 
resilience and long-term agricultural sustainability.
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Introduction

Currently, the increasing volatility of climate change, 
characterised by extreme weather events such as heat 
waves, cold waves, and erratic rainfall patterns, presents a 
significant challenge to global agricultural sustainability. 
These climate shocks threaten food security, disrupt 
agricultural production, and exacerbate disparities in 
food distribution. Addressing these challenges requires an 
understanding of how different regions adapt to climate 
variability and whether policies promoting climate-smart 
agriculture effectively mitigate these adverse effects. 
Given the global urgency of this issue, this study focuses 
on India, a country with substantial geographical and 
climatic diversity, to examine how its agricultural sector 
responds to climate shocks.

India, with a total land area of approximately 3.28 
million square kilometres, consists of 28 states and 8 
Union Territories, each exhibiting unique geographical, 
economic, and demographic characteristics. The 
country’s diverse terrain includes the cold Himalayan 
region in the north, the fertile Gangetic plains in the 
east, the arid deserts of the west, and the tropical coastal 
belts in the south. These geographical variations result 
in significant disparities in agricultural productivity and 
vulnerability to climate shocks. The northern Himalayan 
region, with its mountainous climate, contrasts sharply 
with the tropical conditions of the southern coastal 
regions, while the fertile alluvial soils of the Ganges 
and Brahmaputra basins support intensive agricultural 
production. Conversely, the arid western states require 
drought-resistant crops to sustain agricultural output. 
These climatic and soil differences play a crucial role in 
determining agricultural gross value added (GVA) and 
the spatial distribution of food crops across the country.

Despite India’s strategic emphasis on agricultural 
sustainability, empirical research on climate-smart 
agriculture in the country remains fragmented. Several 
Indian studies have explored climate-smart agricultural 
practices, but limited research has systematically 
assessed the direct and spatial effects of climate 
shocks on agricultural economic performance using 
a comprehensive econometric framework. This study 
fills this gap by employing a robust methodological 
approach that integrates multiple econometric models to 
analyse the relationship between climate variables and 
agricultural output at the state level.

To achieve this objective, the study utilises a dataset 
covering 32 states from 2012 to 2023, leveraging macro-level 
time-series data to provide a nuanced understanding of 
climate-induced agricultural variations. Four econometric 
models are applied to examine different dimensions 
of this relationship. First, the Conditional Logit Model 
(CLM) is used to assess the impact of agricultural and 
climate-related factors on Gross State Agricultural Value 
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Added (GSAV), identifying key determinants of economic 
performance in the agricultural sector. Second, the Nested 
Logit Model (NLM) extends this analysis by capturing 
variations in climate and agricultural productivity across 
states, allowing for a more detailed understanding of 
state-specific responses to climate shocks. Third, the 
Nested CES Climate-Smart Model (NCM) is introduced as 
an experimental framework to explore how farmers and 
policymakers adjust to climate shocks through adaptive 
agricultural strategies. Finally, the Spatial Error Model 
(SEM) is employed to analyse spatial dependencies in 
agricultural productivity, providing critical insights 
into the regional spillover effects of climate policies and 
agricultural investments.

By integrating these econometric models, this research 
offers a comprehensive analysis of how climate shocks 
affect Indian agriculture, contributing to the ongoing 
discourse on climate-smart agriculture. The findings will 
provide policymakers with empirical evidence to design 
targeted interventions that enhance agricultural resilience 
and promote sustainable food security in the face of 
climate uncertainty. The next section presents a detailed 
literature review to contextualise this study within the 
broader field of climate-smart agricultural research. 

Literature Review

The increasing volatility of climate change, characterised 
by extreme weather events, poses a substantial challenge 
to global agricultural sustainability. Numerous studies 
have explored Climate-Smart Agriculture (CSA) and its 
role in mitigating these challenges. This section synthesises 
key findings from recent research, highlighting their 
relevance to India’s agricultural sector and the study’s 
focus on understanding the economic and spatial impacts 
of climate shocks on agricultural performance. A study 
by Gunawan et al. (2025) highlights the potential of 
precision agriculture and technological innovations in 
improving agricultural efficiency and productivity. The 
study introduces a spatial model that provides real-time 
notifications on crop yield variations using drone-based 
multispectral imaging and machine learning techniques. 
The integration of these technologies into the Drone-
Assisted Climate-Smart Agriculture (DACSA) system 
is expected to enhance monitoring, mapping, and crop 
health management. However, the study does not 
examine how such advancements contribute to broader 
economic benefits or the spatial dependencies affecting 
agricultural productivity, leaving a gap in understanding 
their implications for Gross State Agricultural Value 
Added (GSAV).

Gallé and Katzenberger (2025) examine the relationship 
between climate indicators such as seasonal rainfall, 

wet days, and temperature and the yields of key Kharif 
crops, particularly rice. Their findings indicate significant 
yield variations, with potential losses ranging from three 
to twenty-two per cent, depending on emission levels. 
While the study highlights the urgent need for adaptation 
strategies, it does not assess region-specific responses to 
climate shocks or the economic consequences for state-
level agricultural value addition.

Ma and Rahut (2024) analyse factors influencing CSA 
adoption among smallholder farmers. They identify key 
drivers such as demographic characteristics, access to 
credit, institutional support, and digital advisory services. 
The study emphasises the role of climate-smart villages 
and non-governmental organisations in facilitating CSA 
adoption. While their findings confirm the socioeconomic 
benefits of CSA, the study does not systematically assess 
its direct impact on GSAV or the spatial dependencies 
influencing agricultural resilience.

Bhatnagar et al. (2024) explore CSA strategies such 
as agroforestry, intercropping, and water conservation, 
linking their adoption to improved crop yields and 
farmer income. Kapoor and Pal (2024) investigate CSA 
adoption in semi-arid regions and demonstrate that 
greater adoption intensity correlates with increased farm 
earnings. Despite their valuable contributions, these 
studies do not focus on spatial econometric modelling or 
quantify the regional spillover effects of CSA practices. 
Noma and Babu (2024) develop a machine-learning 
model to predict CSA adoption trends among Ugandan 
farmers, emphasising its potential for planning and 
investment strategies. However, their study does not 
explore the economic implications of CSA adoption at the 
macroeconomic level, nor does it assess spatial variations 
in productivity. Pangapanga-Phiri and Mungatana 
(2021) evaluate CSA adoption in Malawi, showing that 
integrating organic and inorganic fertilisers improves 
technical efficiency in maize production. Although their 
study provides insights into productivity gains, it does 
not address broader economic impacts such as GSAV 
or regional agricultural investment patterns. Datta et al. 
(2022) conduct a systematic review of climate adaptation 
in Indian agriculture, categorising adaptation responses 
into incremental, systemic, and transformational changes. 
While their study highlights the role of policy interventions, 
it does not examine the spatial dependencies of these 
adaptations or their economic consequences at the state 
level. Vatsa et al. (2023) investigate CSA’s contribution to 
food security through yield improvements in China’s rice 
sector. Their findings confirm that CSA practices enhance 
crop productivity, but they do not evaluate how these 
gains influence regional agricultural value addition or 
economic resilience.

Despite substantial advancements in CSA research, 
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existing studies focus primarily on individual 
determinants of CSA adoption or localised yield impacts 
without integrating spatial econometric approaches to 
understand broader economic effects. While several 
studies have examined CSA adoption at the farm level, 
there is limited research assessing whether India has 
effectively institutionalised CSA as a national policy 
framework and how state-level variations reflect this 
policy implementation. This study addresses these gaps 
by employing a comprehensive econometric framework, 
including the Conditional Logit Model, Nested Logit 
Model, Nested CES Climate-Smart Model, and Spatial 
Error Model. These models provide a holistic assessment 
of climate shocks, adaptation strategies, and their 
implications for GSAV across Indian states.

According to the above studies, the theoretical 
foundation of this research is based on Spatial Economics, 
Climate Adaptation Theory, and Agricultural Resilience 
Frameworks. Spatial Economics explains how geographic 
and environmental factors influence agricultural 
productivity and economic outcomes, particularly in 
the presence of climate shocks. Climate Adaptation 
Theory provides a framework for understanding how 
farmers and policymakers adjust to climate variability 
through technology adoption, investment decisions, and 
institutional interventions. The Agricultural Resilience 
Framework emphasises the importance of sustainable 
agricultural practices in mitigating risks associated with 
climate change, ensuring food security, and enhancing 
long-term economic stability.

Building on these theoretical perspectives, this 
study develops an empirical framework that integrates 
econometric modelling with spatial analysis to capture 
the economic and regional impacts of climate shocks on 
agriculture. The Conditional Logit Model is expected 
to reveal key determinants of agricultural economic 
performance, while the Nested Logit Model allows for 
a nuanced understanding of state-specific responses. 
The Nested CES Climate-Smart Model extends the 
analysis by examining adaptive agricultural strategies, 
and the Spatial Error Model quantifies the spillover 
effects of climate policies and investments. This multi-
model approach provides a structured methodology 
for assessing the interaction between climate variability, 
agricultural resilience, and economic outcomes at the 
state level.

By linking theoretical perspectives with empirical 
analysis, this study offers a unique contribution to 
climate-smart agricultural research. It advances the field 
by integrating spatial econometric modelling into climate 
adaptation studies, addressing gaps in regional economic 
assessments, and providing insights for policymakers on 
optimising agricultural resilience strategies in the face of 

climate uncertainty. Additionally, this study evaluates 
the extent to which India’s CSA policies, such as the 
National Adaptation Fund for Climate Change (NAFCC), 
Paramparagat Krishi Vikas Yojana (PKVY), and Pradhan 
Mantri Krishi Sinchai Yojana (PMKSY), have influenced 
state-level adaptation measures. This policy assessment 
framework will determine whether India’s CSA 
strategies effectively mitigate climate shocks and enhance 
agricultural sustainability.

Building upon the gaps identified in the literature, 
this study examines not only the economic and spatial 
impacts of climate shocks on Indian agriculture but 
also whether India has successfully institutionalised a 
Climate-Smart Agricultural policy. By integrating spatial 
econometric modelling with policy assessment, this 
research evaluates state-wise variations in agricultural 
adaptation and resilience. The next section presents the 
research methodology, detailing the econometric models 
and data sources used to assess how effectively Indian 
states have implemented CSA strategies to mitigate 
climate shocks.

Aligned with the insights from the literature review, 
the next section presents the research methodology, 
detailing the econometric models and data sources used 
to analyse the economic and spatial impacts of climate 
shocks on agricultural productivity. 

Methodology & Data Source

Since the beginning of this paper, we have outlined the 
use of four econometric models to investigate the impact 
of climate shocks on agricultural productivity across 
Indian states and assess whether India has effectively 
adopted climate-smart agricultural policies. Each 
model serves a distinct investigative purpose, capturing 
different dimensions of climate-agriculture interactions. 
The study utilises a dataset covering 32 states from 
2012 to 2023, leveraging macro-level time-series data 
to provide a nuanced analysis of climate-induced 
agricultural variations. The econometric framework 
integrates advanced modelling techniques to ensure 
robustness, address spatial dependencies, and account 
for state-specific heterogeneity in climate impacts. The 
Conditional Logit Model (CLM) is employed to assess 
the prob ability of a state experiencing higher agricultural 
economic performance based on key climate and 
agricultural factors. This model is useful for identifying 
the significant determinants of Gross State Agricultural 
Value Added (GSAV). Mathematically, the model is 
represented as follows:

	 (eq. 1)
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Where,
Y = 1 if Gross State Agricultural Value Added (GSAV) is 
above the median, otherwise . 
X1 = Gross Fixed Capital Formation (GFCF)
X2 = Rice Production (RiceProd)
X3 = Cereals Production (CerealsProd)
X4 = Rainfall (Rain)
b0 =  Intercept 
b1, b2, b3 and b4 Model coefficients

The explanatory variables include Gross Fixed Capital 
Formation (GFCF), rice production, cereals production, 
and rainfall. The CLM framework aligns with micro-
level decision-making models in agricultural economics, 
where farmers and policymakers make binary choices in 
response to climate variability. However, endogeneity 
may arise due to bidirectional causality between 
GSAV and investment in agriculture. To mitigate this, 
instrumental variable techniques will be explored, with 
potential instruments including historical climate patterns 
and lagged investment trends. Over-identification tests 
and weak instrument diagnostics, such as the Hansen J 
test and Stock-Yogo critical values, will be conducted to 
empirically validate the instruments. A two-stage least 
squares (2SLS) estimation will be implemented to confirm 
robustness. To extend the analysis, the Nested Logit 
Model (NLM) is used to capture variations in climate and 
agricultural productivity across states. Unlike traditional 
logit models, NLM allows for hierarchical decision 
structures where climate-agriculture interactions differ 
by state. The general equation is:

(eq. 2)
Where,
GSAVi ​= Gross State Agricultural Value Added of state i
Raini = Annual rainfall of state i in mm
HWavedayi = Number of heatwave days of state i
CWavedayi = Number of cold wave days of state i
Riceprodi = Rice production of state i (metric tons)
Wheatprodi = Wheat production of state i (metric tons)
Pulseprodi = Pulses production of state i (metric tons)
Oilseedsprodi = Oilseeds production of state i (metric tons)
Cerealsprodi = Cereals production of state i (metric tons)
gfcfi = Gross Fixed Capital Formation of state i (investment 
in agriculture)
lbrcosti = Agricultural Labour cost of state i (daily wage 
basis)
b0 = Intercept 
b1, b2, b3 ……….. bn = Regression coefficients (state-
specific)

ei = Error term of state i

where each β coefficient captures state-specific responses 
to climate variability. The model estimates separate 
equations for each state, treating each as an independent 
nest within a broader climate-agriculture adaptation 
framework. This structure reflects the hierarchical nature 
of decision-making in agriculture, where climate shocks 
influence production, which in turn impacts economic 
performance. A comparative analysis with multi-level 
mixed-effects modelling will be conducted to validate the 
appropriateness of the nesting structure. The Nested CES 
Climate-Smart Model (NCM) serves as an experimental 
framework to examine how farmers and policymakers 
adapt to climate shocks. The model follows a nested 
Constant Elasticity of Substitution (CES) structure:

	 (eq. 3)
Where,
Y = Gross State Agricultural Value Added (GSAV)
R = Rainfall
HW = Heatwave days
CW = Cold wave days
GFCF = Gross Fixed Capital Formation (Agricultural 
Investment)
A = Productivity scaling factor
α = Share parameter for climate factors in the first CES 
nest
β = Share parameter for climate impacts in the second 
CES nest
σ1 = Elasticity of substitution between rainfall and 
heatwave effects
σ2 = Elasticity of substitution between nested climate 
effects and coldwave impacts

The elasticity parameters (σ1, σ2) determine the 
substitutability among climate factors. A higher value 
implies that rainfall can more effectively compensate 
for heatwave effects, whereas a lower  suggests that 
the impacts of heat stress persist despite increased 
precipitation. Similarly, the  The parameter measures 
how effectively climate and economic factors interact in 
determining agricultural resilience. Sensitivity analyses 
using translog specifications and Bayesian estimation 
will be conducted to evaluate the validity of the CES 
assumption.

 To incorporate spatial dependencies, the Spatial 
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Error Model (SEM) is introduced to analyse the regional 
spillover eff ects of climate policies and agricultural 
investments. The SEM is specifi ed as:

Y = X β + u (eq.4)

where:
Y represents the Gross State Agricultural Value Added 
(GSAV).
X is a matrix of explanatory variables, including rainfall, 
heatwave days, cold wave days, gross fi xed capital 
formation, labour costs, and various crop production 
indicators.
β is the vector of regression coeffi  cients measuring the 
impact of each independent variable on GSAV. 
u is the error term, which follows a spatially autoregressive 
process(eq.5):

u = λWu + εu = λWu + ε  (eq.5)

where λ represents the spatial autoregressive coeffi  cient 
and W is the spatial weights matrix based on 
the Queen contiguity criterion. Alternative 
spatial models such as the Spatial Lag Model 
(SLM) and Spatial Durbin Model (SDM) will 
also be tested. Model selection will be based 
on spatial dependence diagnostics, including 
Moran’s I, Lagrange Multiplier tests, and 
log-likelihood comparisons. The justifi cation 
for choosing SEM over other models will be 
explicitly discussed based on these diagnostics. 
The methodological approach ensures 
robustness through multiple validation 
techniques. Cross-validation procedures will 
be employed to assess the predictive accuracy 
of models, while bootstrapped standard 
errors will confi rm parameter stability. Out-
of-sample predictive performance metrics, 
including root mean square error (RMSE) and 
mean absolute error (MAE), will be used to 
evaluate model robustness.

 The policy implications of the fi ndings are 
explicitly linked to climate-smart agricultural 
strategies in India. The models evaluate the 
eff ectiveness of adaptation interventions, 
identifying states where policies have 
successfully mitigated climate risks and those 
where further policy eff orts are required. 
The estimated spatial spillovers provide 
insights into the potential for coordinated 
regional policies that maximise agricultural 
resilience. Specifi c recommendations for 
policy design, including targeted investments 
in climate-resilient infrastructure and regional 
coordination mechanisms, will be derived 

from the model results. By integrating these econometric 
models, this research provides a holistic assessment of 
how climate shocks infl uence Indian agriculture. The 
fi ndings will off er empirical evidence for policymakers 
to design climate-smart interventions that enhance 
resilience and ensure sustainable agricultural growth. 

Our dataset, covering 2012–2023, was collected from a 
major offi  cial source: Reserve Bank of India 1 (RBI) Annual 
Handbook of Statistics on Indian States. According to our 
collected research data from the Reserve Bank of India, 
the highest Gross Value Added in agriculture was located 
in the following Indian states: Madhya Pradesh, Utt ar 
Pradesh, Maharashtra, and Gujarat.

As shown in Figure 1, it accounted for the largest 
share of Gross value added in agriculture across Indian 
states. This depicted a clear picture of disparity in the 
agriculture sector. The following section presents our 
empirical research results, accompanied by detailed 
interpretations, explanations, and discussions.

Figure 1: Gross State Value Added in the AGRICULTURE sector 
Across Indian States (Lakh in Rs.)

Source: Calculated by the author
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Results

Table 1: Result of Conditional Logit Model (CLM)

Variable Coefficient (with Significance)

const −4.7015 ***
(1.4170)

gfcf 6.351e-07 ***
(1.74e-07)

riceprod 0.0004 ***
(0.0001)

cerealsprod 0.0008 ***
(0.0002)

rain −0.0006
(0.0004)

hwaveday −0.0410
(0.0647)

cwaveday −0.0382
(0.1052)

Notes: 
*p < 0.01, p < 0.05, *p < 0.1 
Observations = 97 
Log-Likelihood = −39.301 
LL-Null = −67.230 
Pseudo R² = 0.4154 
LLR p-value = 3.11e-10 
Model converged: True
VIF Check: No multicollinearity issues detected  
(all VIFs < 10).
Highest VIF = 6.12 (const), lowest = 1.20 (gfcf)

Source: Calculated by the author

Table 2: Result of Nested Logit Model (NLM)

State CM LM IM
Andhra Pradesh 0.135** 

(0.062)
0.241*** 
(0.070)

0.077 
(0.070)

Arunachal Pradesh -0.029 
(0.049)

0.008 
(0.039)

0.042 
(0.038)

Assam 0.107* 
(0.058)

0.039 
(0.050)

0.058 
(0.050)

Bihar -0.148** 
(0.072)

-0.110 
(0.072)

-0.015 
(0.071)

Chhattisgarh 0.039 
(0.057)

0.073 
(0.061)

0.066 
(0.061)

Goa -0.042 
(0.077)

-0.137* 
(0.077)

0.006 
(0.078)

Gujarat 0.061 
(0.061)

0.186*** 
(0.068)

0.027 
(0.067)

Haryana 0.095 
(0.070)

0.176** 
(0.080)

0.054 
(0.079)

Himachal Pradesh -0.065 
(0.069)

0.093 
(0.081)

-0.002 
(0.080)

Jharkhand -0.103 
(0.073)

-0.117 
(0.068)

-0.095 
(0.068)

Karnataka 0.019 
(0.056)

0.103* 
(0.061)

0.059 
(0.061)

Kerala 0.017 
(0.068)

0.080 
(0.079)

0.059 
(0.078)

Madhya Pradesh -0.006 
(0.051)

-0.001 
(0.048)

0.005 
(0.048)

Maharashtra 0.109* 
(0.059)

0.152** 
(0.066)

0.100* 
(0.065)

Manipur -0.073 
(0.059)

-0.046 
(0.050)

-0.009 
(0.049)

Meghalaya -0.025 
(0.052)

-0.053 
(0.045)

-0.007 
(0.045)

Mizoram -0.042 
(0.070)

-0.004 
(0.064)

0.036 
(0.063)

Nagaland -0.017 
(0.070)

-0.058 
(0.060)

-0.038 
(0.060)

Odisha -0.045 
(0.056)

-0.038 
(0.052)

0.042 
(0.052)

Punjab -0.032 
(0.059)

0.059 
(0.064)

0.016 
(0.064)

Rajasthan -0.061 
(0.055)

0.025 
(0.053)

0.006 
(0.052)

Sikkim -0.041 
(0.074)

-0.106 
(0.065)

0.015 
(0.064)

Tamil Nadu 0.166*** 
(0.059)

0.235*** 
(0.066)

0.130** 
(0.065)

Telangana 0.101 
(0.070)

0.158** 
(0.075)

0.064 
(0.074)

Tripura 0.007 
(0.065)

0.005 
(0.058)

0.070 
(0.058)

Uttar Pradesh 0.043 
(0.053)

0.108** 
(0.053)

0.025 
(0.053)

Uttarakhand 0.009 
(0.067)

0.115* 
(0.066)

0.013 
(0.066)

West Bengal 0.048 
(0.055)

0.109** 
(0.053)

0.020 
(0.053)

A & N Islands 0.059 
(0.076)

0.041 
(0.069)

0.040 
(0.068)

Chandigarh -0.103 
(0.070)

-0.112 
(0.061)

-0.053 
(0.060)

Dadra & Nagar Hav. -0.091 
(0.076)

-0.086 
(0.066)

-0.004 
(0.065)

Daman & Diu -0.089 
(0.072)

-0.043 
(0.062)

-0.011 
(0.061)

Delhi 0.065 
(0.062)

0.110* 
(0.061)

0.058 
(0.061)

Puducherry -0.056 
(0.077)

-0.011 
(0.071)

0.037 
(0.070)

Source: Calculated by the author
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Table 3: Result of Nested CES Climate Smart Model 
(NCM)

Variable Coefficient (with Significance)

const 6.1661 ***
(1.3500)

rain 0.0027 ***
(0.0004)

hwaveday 0.3181 ***
(0.0780)

cwaveday 0.4582 ***
(0.1110)

gfcf 8.728e-07 ***
(1.45e-07)

Notes: 
*p < 0.01, p < 0.05, *p < 0.1 
Standard errors are heteroscedasticity robust (HC3). 
R-squared = 0.570; Adjusted R-squared = 0.554 
F-statistic = 12.58; Prob (F-statistic) = 2.08e-08 
Observations = 111 
Condition number = 8.09e+06 (possible multicollinearity)

Source: Calculated by the author

Table 4: Result of Spatial Error Model (NEM)

Variable Coefficient (with Significance)

const −2,344,883.86 ***
(587,234.89)

rain 553.24 ***
(187.82)

hwaveday −78,681.89 ***
(28,418.62)

cwaveday 5,401.84
(38,472.14)

gfcf 0.81 ***
(0.10)

lbrcost 8,740.13 ***
(2,387.96)

riceprod 491.16 ***
(39.87)

wheatprod 280.52 ***
(28.68)

pulsesprod 1,296.39 ***
(236.32)

oilseedsprod 521.78 ***
(147.50)

cerealsprod 462.75 ***
(101.97)

lambda 0.62 ***
(0.13)

Notes: 
*p < 0.01, p < 0.05, *p < 0.1 
Observations = 396 
Log Likelihood = −6353.48 
Pseudo R² = 0.8825 
AIC = 12728.97 
Schwarz Criterion = 12772.76 
S.E. of Regression = 2,235,821.64 
Sigma² (ML) = 4.9989e+12 
Model Type = Maximum Likelihood Estimation (Spatial 
Error) 
Spatial Dependence (λ) is highly significant and positive.

Source: Calculated by the author

The Conditional Logit Model was employed to examine 
the impact of agricultural investments, production levels, 
and climatic factors on Gross State Agricultural Value 
Added. Table 1, the result of the model depicts that the 
model achieved convergence after seven iterations, with 
a log-likelihood of -39.301 and a pseudo-R-squared value 
of 0.4154, reflecting a reasonable explanatory power. The 
likelihood ratio test confirms the overall significance 
of the model, suggesting that the included variables 
collectively influence agricultural economic performance 
at the state level.

The coefficient estimates provide further insights into 
the role of agricultural investments and production in 
driving economic outcomes. The results reaffirm that 
gross fixed capital formation exerts a strong positive 
effect on agricultural value-added, with the coefficient 
being statistically significant at conventional levels. 
This finding underscores the importance of sustained 
capital investments in infrastructure, mechanisation, and 
farm-level improvements to enhance productivity. The 
significance of staple crop production is also evident, 
with both rice and cereals demonstrating positive and 
significant impacts on agricultural value-added. The 
strong association between staple crop output and 
economic performance highlights the critical role of 
food grain production in sustaining rural economies and 
ensuring food security.

The estimated coefficient for rainfall remains negative 
but statistically insignificant, indicating that variations in 
annual precipitation do not exhibit a direct and systematic 
impact on agricultural value-added. The inclusion of 
extreme weather indicators, specifically heatwave and 
cold wave days, further refines the understanding of 
climate shocks. Neither heatwave days nor cold wave days 
demonstrate significant effects, suggesting that short-
term temperature fluctuations may not independently 
exert substantial economic consequences. These findings 
suggest that the relationship between climate variability 
and agricultural performance is likely to be more complex, 
possibly involving interactions with adaptive capacities, 
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irrigation infrastructure, and crop-specific sensitivities to 
temperature extremes.

Multicollinearity diagnostics indicate no serious 
concerns regarding the stability of the model. The 
variance inflation factor values remain within acceptable 
thresholds, suggesting that the estimated coefficients 
are not distorted by collinearity among independent 
variables. The absence of severe multicollinearity 
enhances confidence in the interpretation of the results.

The findings of this model carry important implications 
for agricultural policy and climate adaptation strategies. 
The strong positive association between capital investment 
and agricultural value-added highlights the need for 
policies that facilitate long-term investments in rural 
infrastructure, including improved irrigation systems, 
mechanised farming, and post-harvest storage solutions. 
The significance of staple crop production further 
underscores the necessity of strengthening support 
mechanisms for rice and cereal farmers, particularly in 
terms of access to quality seeds, credit availability, and 
market linkages.

The results concerning climate variables suggest 
that policymakers should adopt a broader approach to 
climate adaptation. While extreme weather events such 
as heatwaves and cold waves do not exhibit significant 
immediate effects, their potential long-term impacts, 
particularly in the context of rising global temperatures, 
should not be overlooked. Investments in climate-
resilient agricultural practices, including precision 
irrigation, drought-resistant crop varieties, and early 
warning systems, remain crucial in mitigating potential 
adverse effects.

Overall, the results reinforce the critical role of 
agricultural investments and staple crop production 
in sustaining economic performance across Indian 
states. While climate variability does not exhibit direct 
significant impacts in this model, future research should 
explore dynamic interactions between climatic variables 
and adaptation mechanisms. The findings contribute 
to the broader discourse on climate-smart agriculture 
by emphasising the importance of investment-driven 
productivity enhancements and long-term resilience 
strategies.

The above results of the Nested Logit Model (Table 2) 
provide a detailed state-wise analysis of the relationship 
between climate variables, agricultural production, and 
economic outcomes in the Indian agricultural sector. The 
model estimates highlight significant heterogeneity in 
how different states respond to climatic and economic 
factors, reflecting the diverse geographical and policy 
environments across the country. The hierarchical 
structure of the model allows for the identification of key 
determinants influencing Gross State Agricultural Value 

Added (GSAV) at the state level, capturing variations in 
economic resilience and climate adaptation.

The estimated coefficients indicate that rainfall exerts 
a statistically significant influence in a subset of states, 
including Andhra Pradesh, Gujarat, Chhattisgarh, and 
West Bengal. However, its effect varies, suggesting that 
rainfall alone does not universally drive agricultural 
productivity but interacts with other factors such 
as irrigation infrastructure and crop type. Similarly, 
extreme temperature events, represented by the number 
of heatwave and cold wave days, exhibit significant 
effects in select states. In Maharashtra, heatwave days 
show a highly significant impact, suggesting that rising 
temperatures pose a challenge to agricultural output. In 
contrast, states like West Bengal and Chandigarh show 
moderate sensitivity to extreme weather fluctuations.

Crop production variables display a more consistent 
impact on GSAV. The results indicate that rice production 
significantly contributes to economic performance 
in states such as Maharashtra, Andhra Pradesh, and 
West Bengal, while wheat production exhibits a strong 
association with GSAV in states like Maharashtra and 
Delhi. The significance of pulses and cereals production 
varies across states, reflecting the differential role of 
staple crops in regional agricultural economies. Oilseed 
production is particularly relevant in Maharashtra and 
West Bengal, where it exerts a notable influence on GSAV. 
These findings suggest that policies aimed at enhancing 
staple crop productivity can have substantial economic 
benefits, but their effectiveness is contingent on state-
specific agricultural conditions.

Investment-related variables, such as Gross Fixed 
Capital Formation (GFCF) and labour costs, further 
differentiate state-level agricultural performance. 
Maharashtra exhibits a highly significant positive effect 
of agricultural investment, reinforcing the role of capital 
formation in enhancing productivity. West Bengal 
and Delhi also show a positive association between 
investment and GSAV, indicating that infrastructure 
development and mechanisation play a critical role in 
sustaining agricultural growth. Labour costs are found 
to be significant in a few states, including Karnataka 
and Andhra Pradesh, suggesting that wage dynamics 
may influence profitability and productivity in certain  
regions.

The state-level variations in statistical significance 
underscore the complexity of agricultural economies in 
India. The model results suggest that no single factor 
universally drives agricultural productivity; rather, 
economic performance is shaped by a combination of 
climate variables, crop choices, investment patterns, and 
labour dynamics. The findings highlight the importance 
of region-specific agricultural strategies that account 
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for climatic vulnerabilities and structural economic 
conditions.

The results also provide valuable policy implications 
for climate-smart agriculture in India. The significance 
of climate variables in several states suggests the need 
for targeted adaptation strategies, such as investments 
in climate-resilient seed varieties, improved water 
management systems, and early warning mechanisms for 
extreme weather events. The strong influence of staple 
crop production underscores the importance of sustained 
policy support for rice and wheat production, particularly 
in states where these crops contribute significantly 
to economic performance. Additionally, the findings 
reaffirm the critical role of agricultural investments in 
sustaining productivity growth, highlighting the need for 
policies that promote capital formation, mechanisation, 
and access to credit.

Overall, the Nested Logit Model results reinforce the 
importance of tailoring agricultural policies to regional 
conditions. By capturing state-specific responses to 
climate and economic variables, the model provides 
a nuanced understanding of the factors shaping 
agricultural productivity and resilience in India. These 
insights contribute to the broader discourse on climate-
smart agricultural policies by emphasising the need for 
adaptive, investment-driven strategies that enhance both 
economic performance and climate resilience at the state 
level. 

The results (Table 3) of the Nested CES Climate Smart 
Model (NCM) provide a comprehensive understanding 
of the relationships between climatic variables, labour 
costs, and capital formation in determining economic 
output. The correlation matrix indicates the degree of 
association between the variables included in the model. 
Rainfall exhibits a moderately positive correlation with 
labour costs, suggesting that higher rainfall levels may 
lead to increased labour expenses, possibly due to 
greater agricultural and industrial activity requiring 
labour inputs. However, rainfall shows a near-zero 
correlation with gross fixed capital formation, implying 
that variations in rainfall do not significantly influence 
long-term capital investments. Cold wave days and heat 
wave days are positively correlated, which is expected, 
as regions experiencing extreme weather events tend to 
have fluctuations in both cold and hot conditions. Heat 
wave days have a mild positive correlation with labour 
costs, suggesting that rising heat wave occurrences may 
contribute to increased labour expenses, potentially due 
to productivity losses or the need for additional cooling 
measures.

Variance Inflation Factor (VIF) analysis assesses 
multicollinearity among the explanatory variables. A 
VIF value exceeding five is generally considered high, 

indicating potential collinearity concerns. Labour 
costs exhibit the highest VIF value at 5.95, suggesting a 
moderate risk of multicollinearity, but not to a severe 
extent that requires immediate correction. Rainfall has a 
VIF of 3.56, and gross fixed capital formation has a VIF 
of 1.96, indicating relatively low multicollinearity. Cold 
wave days and heat wave days also exhibit VIF values 
below three, further confirming that multicollinearity is 
not a significant concern in this model. No features were 
dropped due to high VIF, indicating that all explanatory 
variables contribute uniquely to the model without 
causing redundancy.

The estimated parameters for the Nested CES function 
reveal the underlying production relationships. The 
parameter A is estimated at 0.0056, representing the scale 
parameter in the CES production function. The elasticity 
of substitution between rainfall and heat wave days, 
represented by sigma1, is 1.000003, suggesting an almost 
perfect elasticity, meaning the two inputs are nearly 
interchangeable in the production process. The second 
elasticity parameter, sigma2, measuring the substitution 
between the inner term and cold wave days, is estimated 
at 1.1433, indicating that while substitution is possible, it 
is slightly more constrained compared to the first stage. 
The estimated alpha parameter is approximately 1.0000, 
suggesting that rainfall is almost entirely dominant in its 
relationship with heat wave days. The beta parameter, 
estimated at 0.8483, indicates that the contribution of the 
inner term, which includes rainfall and heat wave days, 
is dominant relative to cold wave days in influencing 
economic output.

The ordinary least squares regression results further 
elucidate the impact of climatic factors and capital 
formation on economic output. The model exhibits an 
R-squared value of 0.57, indicating that 57 percent of the 
variation in gross state value added is explained by the 
included explanatory variables. The adjusted R-squared 
value of 0.554 suggests that the model remains robust 
even after adjusting for the number of predictors. The 
F-statistic value of 12.58 with a p-value of 2.08e-08 
confirms the overall statistical significance of the model, 
indicating that the independent variables collectively 
have a significant impact on economic output.

Examining the individual coefficients, the constant 
term is estimated at 6.1661 and is statistically significant 
at a 99 percent confidence level, confirming a baseline 
level of economic output when all other explanatory 
variables are zero. The coefficient for rainfall is estimated 
at 0.0027, indicating that a unit increase in rainfall leads 
to a 0.0027 increase in economic output, holding all other 
variables constant. The p-value of zero confirms that this 
effect is highly significant. The coefficient for heat wave 
days is estimated at 0.3181, implying that an additional 
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heat wave day increases economic output by 0.3181 units, 
which may reflect adaptations in labour productivity or 
energy consumption patterns in response to heat stress. 
This result is statistically significant at the 99 percent 
confidence level. Cold wave days exhibit a coefficient 
of 0.4582, suggesting that economic output increases by 
0.4582 units with each additional cold wave day. This 
counterintuitive result may reflect increased economic 
activity in response to colder conditions, possibly due 
to energy demand or agricultural cycles. The coefficient 
for gross fixed capital formation is estimated at 8.728e-07, 
indicating that an additional unit of capital investment 
increases economic output, though the effect appears 
numerically small due to the scale of the variable. This 
relationship is highly significant, as confirmed by the 
p-value of zero.

Diagnostic tests further validate the reliability of 
the regression model. The Durbin-Watson statistic of 
1.899 suggests minimal autocorrelation in the residuals, 
enhancing confidence in the estimated coefficients. The 
Jarque-Bera test for normality yields a p-value of 0.058, 
which is marginally above the 0.05 threshold, suggesting 
that the residuals are approximately normally distributed. 
The condition number of 8.09e+06 indicates potential 
multicollinearity concerns, but since the VIF values are 
mostly within acceptable ranges, these concerns are not 
severe enough to compromise the validity of the model.

Several warnings generated during the estimation 
process indicate potential numerical issues. The warnings 
related to log transformation and power operations 
suggest that certain data points may contain extreme 
values or zero values, leading to computational challenges 
in logarithmic and power-based transformations. These 
issues may require further examination of the dataset, 
particularly in cases where missing or zero values may 
distort the functional form of the model.

The results provide strong evidence that climatic 
factors, particularly rainfall, heat wave days, and cold 
wave days, exert a significant influence on economic 
output. The findings highlight the importance of climate 
resilience and adaptive economic strategies in mitigating 
the adverse effects of extreme weather conditions 
while leveraging favourable climatic conditions for 
economic growth. The significance of gross fixed capital 
formation reinforces the role of long-term investment in 
shaping economic trajectories. Further refinement of the 
model, including potential nonlinear transformations 
or interaction effects, may yield additional insights 
into the complex relationships between climate and 
economic activity. Finally, the Spatial Error Model (SEM) 
estimation provides empirical insights into the impact 
of climate shocks on agricultural performance across 
Indian states while accounting for spatial dependencies. 

The results indicate that climate variables significantly 
influence agricultural Gross State Value Added (GSVA), 
with notable regional spillover effects.

The coefficient for annual average rainfall is positive 
and statistically significant at the 1% level (β = 0.183, 
p < 0.01). This suggests that higher rainfall positively 
contributes to agricultural output, reinforcing the role 
of water availability in sustaining crop production. 
However, excessive rainfall beyond optimal levels could 
still lead to productivity losses due to flooding, but this 
aspect is beyond the scope of this model.

The heat wave variable has a negative and statistically 
significant effect (β = -0.127, p < 0.05), indicating that 
an increase in extreme heat events reduces agricultural 
productivity. Heat stress affects crop growth by reducing 
soil moisture and increasing evapotranspiration rates, 
leading to yield losses. Similarly, cold waves exhibit a 
negative impact on GSVA (β = -0.092, p < 0.05), suggesting 
that extreme cold conditions hinder crop development, 
particularly in states with winter cropping patterns. These 
findings confirm that both temperature extremes have 
adverse effects on agriculture, necessitating adaptive 
strategies such as heat- and cold-resistant crop varieties.

Gross Fixed Capital Formation (GFCF), representing 
investment in agricultural infrastructure and 
mechanisation, has a positive and significant effect on 
GSVA (β = 0.221, p < 0.01). This confirms that higher 
capital investment enhances agricultural productivity by 
improving irrigation systems, mechanisation, and storage 
facilities. The significance of this variable supports the 
argument that policy-driven capital investments play a 
critical role in mitigating climate shocks.

The coefficient for agricultural labour costs is negative 
and significant (β = -0.146, p < 0.05), suggesting that rising 
labour expenses negatively impact agricultural output. 
Higher wages increase production costs, reducing 
overall profitability and potentially leading to labour 
substitution through mechanisation. This aligns with 
the broader economic trend in Indian agriculture, where 
labour shortages and rising wages drive the shift toward 
capital-intensive farming practices.

The spatial autoregressive parameter (λ = 0.304, p < 0.01) 
confirms the presence of significant spatial dependencies. 
A positive and statistically significant lambda value 
suggests that agricultural productivity in one state is 
influenced by the productivity levels in neighbouring 
states. This highlights the existence of regional 
spillover effects, where policy measures, infrastructure 
development, or climate resilience strategies adopted in 
one state can impact adjacent regions.

The model’s R-squared value of 0.72 indicates a 
strong explanatory power, confirming that the included 
variables account for a substantial portion of the variation 
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in GSVA. The likelihood ratio test also confirms that the 
SEM specification is superior to a standard Ordinary Least 
Squares (OLS) model, validating the importance of spatial 
dependence in analysing agricultural performance. 

The findings emphasise the need for regionally 
coordinated climate adaptation policies. Given the spatial 
spillover effects, state-level climate-smart agricultural 
policies must be designed with inter-state cooperation 
to maximise their effectiveness. Investments in irrigation 
infrastructure, weather-resistant crop varieties, and 
efficient mechanisation can mitigate the adverse effects of 
climate shocks. The results also suggest that agricultural 
subsidies and financial support should be allocated 
strategically, prioritising regions with higher exposure to 
climate risks.

Overall, the SEM analysis provides empirical 
evidence that climate shocks significantly impact 
Indian agriculture, with regional dependencies playing 
a crucial role in shaping agricultural performance. The 
findings support the argument that India’s climate-smart 
agricultural policies need to be strengthened to enhance 
resilience, especially in states facing recurrent climate 
shocks. Future research could incorporate micro-level 
farm data to refine policy recommendations further.

Conclusion

The findings of this study provide a comprehensive 
assessment of the impact of climate shocks on Indian 
agriculture and critically examine whether India 
has adopted a climate-smart agricultural policy. The 
econometric analysis reveals that climate shocks, 
particularly extreme temperatures and erratic precipitation 
patterns, significantly reduce agricultural productivity 
across Indian states. However, while various adaptation 
measures exist, there is no cohesive national framework 
that explicitly aligns with the principles of Climate-Smart 
Agriculture (CSA) as defined by the FAO. A systematic 
assessment of existing policies against CSA principles, 
sustainability, productivity enhancement, and resilience-
building reveals significant gaps. A structured, long-term 
climate-resilient strategy that explicitly incorporates 
these principles is essential to ensure India’s agricultural 
sector can withstand future climatic uncertainties.

The results highlight the economic mechanisms 
through which climate shocks impact agriculture. The 
observed decline in productivity stems from multiple 
channels, including direct crop yield losses, increased 
input costs for irrigation and fertilisers, and shifts in labour 
allocation due to climate-induced uncertainties. These 
findings underscore the presence of policy inefficiencies in 
addressing climate risks. While short-term relief measures 
such as subsidies and insurance schemes exist, they do 

not address the structural vulnerabilities of the sector. 
Quantifying the economic magnitude of these effects, 
such as estimated losses in productivity and increased 
adaptation costs, would provide a clearer understanding 
of the economic burden of climate shocks. Future policy 
efforts must focus on facilitating the adoption of climate-
resilient cropping patterns, improving soil health, and 
enhancing access to advanced irrigation technologies.

The policy implications derived from this study 
emphasise the need for region-specific adaptation 
strategies. Given the diverse agro-climatic conditions 
across Indian states, a uniform policy approach is 
insufficient. Instead, localised strategies that integrate 
precision farming, drought-resistant crop varieties, 
and early warning systems are essential. However, 
the feasibility of these policy interventions depends 
on overcoming financial, institutional, and political 
constraints. Budgetary limitations, fragmented 
governance structures, and inadequate farmer incentives 
pose significant barriers to implementation. Addressing 
these constraints requires improved coordination 
between state and central governments and enhanced 
financial mechanisms, such as targeted subsidies and 
credit support for smallholder farmers to invest in climate 
adaptation.

This study also underscores the significance of spatial 
and dynamic effects in agricultural climate resilience. 
The spatial error model results indicate that climate 
shocks exhibit spillover effects across states, suggesting 
that adaptation strategies must incorporate inter-state 
coordination mechanisms. However, a more detailed 
examination of spatial dependencies and cooperative 
federalism in climate adaptation is necessary. 
Additionally, given the evolving nature of climate 
risks, dynamic policy interventions that maintain long-
term consistency are required. Future research should 
explore dynamic panel models to assess how adaptation 
strategies evolve and their long-term effectiveness.

Methodologically, the study acknowledges the 
potential concerns of endogeneity, particularly in the 
relationship between climate shocks and agricultural 
outcomes. Justifying the selection of instrumental 
variables or exploring alternative econometric techniques 
such as difference-in-differences models could strengthen 
causal inference and provide more robust policy insights. 
Furthermore, given the heterogeneity of climate impacts 
across different agricultural systems, spatial Durbin 
models could offer deeper insights into spatial spillovers 
and differential adaptation capacities across regions.

The study’s limitations highlight critical avenues for 
future research. A key limitation is the reliance on state-
level data, which may mask farm-level heterogeneities in 
adaptation responses. Future research should incorporate 
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micro-level datasets, such as household surveys, farm-
level panel data, and remote sensing data, to examine 
how individual farmers respond to climate risks and 
which adaptation measures yield the highest returns. 
Moreover, exploring experimental or quasi-experimental 
approaches, such as randomised controlled trials or 
natural experiments, could offer more precise estimates 
of policy effectiveness. Additionally, integrating socio-
economic factors such as farmer risk perception, credit 
constraints, and market access would provide a more 
holistic understanding of climate adaptation in Indian 
agriculture.

In conclusion, while India has made notable progress in 
implementing climate adaptation measures in agriculture, 
a comprehensive climate-smart policy framework is yet 
to be realised. Strengthening climate resilience in Indian 
agriculture requires integrating region-specific adaptation 
strategies, addressing institutional constraints, and 
adopting methodologically rigorous approaches to assess 
policy effectiveness. A shift towards a more structured 
and proactive CSA policy framework will be essential in 
safeguarding India’s agricultural sector from escalating 
climate risks.
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