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Abstract

This study investigates the impact of climate shocks
on Indian agriculture and evaluates the presence of a
climate-smart agricultural policy. Using four econometric
models—Conditional Logit, Nested Logit, Nested CES
Climate-Smart Model, and Spatial Error Model—the
analysis reveals that extreme temperatures and erratic
rainfall significantly affect agricultural productivity.
Findings highlight regional disparities in adaptation and
policy inefficiencies in mitigating climate risks. The study
underscores the need for a structured, region-specific
climate-smart strategy, integrating sustainable practices,
precision farming, and financial support to enhance
resilience and long-term agricultural sustainability.
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Introduction

Currently, the increasing volatility of climate change,
characterised by extreme weather events such as heat
waves, cold waves, and erratic rainfall patterns, presents a
significant challenge to global agricultural sustainability.
These climate shocks threaten food security, disrupt
agricultural production, and exacerbate disparities in
food distribution. Addressing these challenges requires an
understanding of how different regions adapt to climate
variability and whether policies promoting climate-smart
agriculture effectively mitigate these adverse effects.
Given the global urgency of this issue, this study focuses
on India, a country with substantial geographical and
climatic diversity, to examine how its agricultural sector
responds to climate shocks.

* Faculty of Economic Sciences, University of Warsaw,
Warsaw, Poland. Can be reached at spal@wne.uw.edu.pl

India, with a total land area of approximately 3.28
million square kilometres, consists of 28 states and 8
Union Territories, each exhibiting unique geographical,
economic, and demographic characteristics. The
country’s diverse terrain includes the cold Himalayan
region in the north, the fertile Gangetic plains in the
east, the arid deserts of the west, and the tropical coastal
belts in the south. These geographical variations result
in significant disparities in agricultural productivity and
vulnerability to climate shocks. The northern Himalayan
region, with its mountainous climate, contrasts sharply
with the tropical conditions of the southern coastal
regions, while the fertile alluvial soils of the Ganges
and Brahmaputra basins support intensive agricultural
production. Conversely, the arid western states require
drought-resistant crops to sustain agricultural output.
These climatic and soil differences play a crucial role in
determining agricultural gross value added (GVA) and
the spatial distribution of food crops across the country.

Despite India’s strategic emphasis on agricultural
sustainability, empirical research on climate-smart
agriculture in the country remains fragmented. Several
Indian studies have explored climate-smart agricultural
practices, but limited research has systematically
assessed the direct and spatial effects of climate
shocks on agricultural economic performance using
a comprehensive econometric framework. This study
fills this gap by employing a robust methodological
approach that integrates multiple econometric models to
analyse the relationship between climate variables and
agricultural output at the state level.

To achieve this objective, the study utilises a dataset
covering32statesfrom2012t02023, leveraging macro-level
time-series data to provide a nuanced understanding of
climate-induced agricultural variations. Four econometric
models are applied to examine different dimensions
of this relationship. First, the Conditional Logit Model
(CLM) is used to assess the impact of agricultural and
climate-related factors on Gross State Agricultural Value
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Added (GSAV), identifying key determinants of economic
performance in the agricultural sector. Second, the Nested
Logit Model (NLM) extends this analysis by capturing
variations in climate and agricultural productivity across
states, allowing for a more detailed understanding of
state-specific responses to climate shocks. Third, the
Nested CES Climate-Smart Model (NCM) is introduced as
an experimental framework to explore how farmers and
policymakers adjust to climate shocks through adaptive
agricultural strategies. Finally, the Spatial Error Model
(SEM) is employed to analyse spatial dependencies in
agricultural productivity, providing critical insights
into the regional spillover effects of climate policies and
agricultural investments.

By integrating these econometric models, this research
offers a comprehensive analysis of how climate shocks
affect Indian agriculture, contributing to the ongoing
discourse on climate-smart agriculture. The findings will
provide policymakers with empirical evidence to design
targeted interventions that enhance agricultural resilience
and promote sustainable food security in the face of
climate uncertainty. The next section presents a detailed
literature review to contextualise this study within the
broader field of climate-smart agricultural research.

Literature Review

The increasing volatility of climate change, characterised
by extreme weather events, poses a substantial challenge
to global agricultural sustainability. Numerous studies
have explored Climate-Smart Agriculture (CSA) and its
roleinmitigating these challenges. This section synthesises
key findings from recent research, highlighting their
relevance to India’s agricultural sector and the study’s
focus on understanding the economic and spatial impacts
of climate shocks on agricultural performance. A study
by Gunawan et al. (2025) highlights the potential of
precision agriculture and technological innovations in
improving agricultural efficiency and productivity. The
study introduces a spatial model that provides real-time
notifications on crop yield variations using drone-based
multispectral imaging and machine learning techniques.
The integration of these technologies into the Drone-
Assisted Climate-Smart Agriculture (DACSA) system
is expected to enhance monitoring, mapping, and crop
health management. However, the study does not
examine how such advancements contribute to broader
economic benefits or the spatial dependencies affecting
agricultural productivity, leaving a gap in understanding
their implications for Gross State Agricultural Value
Added (GSAV).

Gallé and Katzenberger (2025) examine the relationship
between climate indicators such as seasonal rainfall,

Examining How Climate Shocks Affect Agriculture in Indian States

wet days, and temperature and the yields of key Kharif
crops, particularly rice. Their findings indicate significant
yield variations, with potential losses ranging from three
to twenty-two per cent, depending on emission levels.
While the study highlights the urgent need for adaptation
strategies, it does not assess region-specific responses to
climate shocks or the economic consequences for state-
level agricultural value addition.

Ma and Rahut (2024) analyse factors influencing CSA
adoption among smallholder farmers. They identify key
drivers such as demographic characteristics, access to
credit, institutional support, and digital advisory services.
The study emphasises the role of climate-smart villages
and non-governmental organisations in facilitating CSA
adoption. While their findings confirm the socioeconomic
benefits of CSA, the study does not systematically assess
its direct impact on GSAV or the spatial dependencies
influencing agricultural resilience.

Bhatnagar et al. (2024) explore CSA strategies such
as agroforestry, intercropping, and water conservation,
linking their adoption to improved crop yields and
farmer income. Kapoor and Pal (2024) investigate CSA
adoption in semi-arid regions and demonstrate that
greater adoption intensity correlates with increased farm
earnings. Despite their valuable contributions, these
studies do not focus on spatial econometric modelling or
quantify the regional spillover effects of CSA practices.
Noma and Babu (2024) develop a machine-learning
model to predict CSA adoption trends among Ugandan
farmers, emphasising its potential for planning and
investment strategies. However, their study does not
explore the economic implications of CSA adoption at the
macroeconomic level, nor does it assess spatial variations
in productivity. Pangapanga-Phiri and Mungatana
(2021) evaluate CSA adoption in Malawi, showing that
integrating organic and inorganic fertilisers improves
technical efficiency in maize production. Although their
study provides insights into productivity gains, it does
not address broader economic impacts such as GSAV
or regional agricultural investment patterns. Datta et al.
(2022) conduct a systematic review of climate adaptation
in Indian agriculture, categorising adaptation responses
into incremental, systemic, and transformational changes.
Whiletheirstudyhighlightstheroleof policy interventions,
it does not examine the spatial dependencies of these
adaptations or their economic consequences at the state
level. Vatsa et al. (2023) investigate CSA’s contribution to
food security through yield improvements in China’s rice
sector. Their findings confirm that CSA practices enhance
crop productivity, but they do not evaluate how these
gains influence regional agricultural value addition or
economic resilience.

Despite substantial advancements in CSA research,
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existing studies focus primarily on individual
determinants of CSA adoption or localised yield impacts
without integrating spatial econometric approaches to
understand broader economic effects. While several
studies have examined CSA adoption at the farm level,
there is limited research assessing whether India has
effectively institutionalised CSA as a national policy
framework and how state-level variations reflect this
policy implementation. This study addresses these gaps
by employing a comprehensive econometric framework,
including the Conditional Logit Model, Nested Logit
Model, Nested CES Climate-Smart Model, and Spatial
Error Model. These models provide a holistic assessment
of climate shocks, adaptation strategies, and their
implications for GSAV across Indian states.

According to the above studies, the theoretical
foundation of this research is based on Spatial Economics,
Climate Adaptation Theory, and Agricultural Resilience
Frameworks. Spatial Economics explains how geographic
and environmental factors influence agricultural
productivity and economic outcomes, particularly in
the presence of climate shocks. Climate Adaptation
Theory provides a framework for understanding how
farmers and policymakers adjust to climate variability
through technology adoption, investment decisions, and
institutional interventions. The Agricultural Resilience
Framework emphasises the importance of sustainable
agricultural practices in mitigating risks associated with
climate change, ensuring food security, and enhancing
long-term economic stability.

Building on these theoretical perspectives, this
study develops an empirical framework that integrates
econometric modelling with spatial analysis to capture
the economic and regional impacts of climate shocks on
agriculture. The Conditional Logit Model is expected
to reveal key determinants of agricultural economic
performance, while the Nested Logit Model allows for
a nuanced understanding of state-specific responses.
The Nested CES Climate-Smart Model extends the
analysis by examining adaptive agricultural strategies,
and the Spatial Error Model quantifies the spillover
effects of climate policies and investments. This multi-
model approach provides a structured methodology
for assessing the interaction between climate variability,
agricultural resilience, and economic outcomes at the
state level.

By linking theoretical perspectives with empirical
analysis, this study offers a unique contribution to
climate-smart agricultural research. It advances the field
by integrating spatial econometric modelling into climate
adaptation studies, addressing gaps in regional economic
assessments, and providing insights for policymakers on
optimising agricultural resilience strategies in the face of

215

climate uncertainty. Additionally, this study evaluates
the extent to which India’s CSA policies, such as the
National Adaptation Fund for Climate Change (NAFCC),
Paramparagat Krishi Vikas Yojana (PKVY), and Pradhan
Mantri Krishi Sinchai Yojana (PMKSY), have influenced
state-level adaptation measures. This policy assessment
framework will determine whether India’s CSA
strategies effectively mitigate climate shocks and enhance
agricultural sustainability.

Building upon the gaps identified in the literature,
this study examines not only the economic and spatial
impacts of climate shocks on Indian agriculture but
also whether India has successfully institutionalised a
Climate-Smart Agricultural policy. By integrating spatial
econometric modelling with policy assessment, this
research evaluates state-wise variations in agricultural
adaptation and resilience. The next section presents the
research methodology, detailing the econometric models
and data sources used to assess how effectively Indian
states have implemented CSA strategies to mitigate
climate shocks.

Aligned with the insights from the literature review,
the next section presents the research methodology,
detailing the econometric models and data sources used
to analyse the economic and spatial impacts of climate
shocks on agricultural productivity.

Methodology & Data Source

Since the beginning of this paper, we have outlined the
use of four econometric models to investigate the impact
of climate shocks on agricultural productivity across
Indian states and assess whether India has effectively
adopted climate-smart agricultural policies. Each
model serves a distinct investigative purpose, capturing
different dimensions of climate-agriculture interactions.
The study utilises a dataset covering 32 states from
2012 to 2023, leveraging macro-level time-series data
to provide a nuanced analysis of climate-induced
agricultural variations. The econometric framework
integrates advanced modelling techniques to ensure
robustness, address spatial dependencies, and account
for state-specific heterogeneity in climate impacts. The
Conditional Logit Model (CLM) is employed to assess
the prob ability of a state experiencing higher agricultural
economic performance based on key climate and
agricultural factors. This model is useful for identifying
the significant determinants of Gross State Agricultural
Value Added (GSAV). Mathematically, the model is
represented as follows:

eBotB1X1+B2.X2+B3X31p,.x,

P(Y - 1|X) - 1+ eB0+ﬁ1-X1+ﬁz-X2+33'X3+B4~X4

(eq. 1)
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Where,

Y =1 if Gross State Agricultural Value Added (GSAV) is
above the median, otherwise .

X, = Gross Fixed Capital Formation (GFCF)

X, = Rice Production (RiceProd)

X, = Cereals Production (CerealsProd)

X, = Rainfall (Rain)

B, = Intercept

B, B, B, and B, Model coefficients

The explanatory variables include Gross Fixed Capital
Formation (GFCF), rice production, cereals production,
and rainfall. The CLM framework aligns with micro-
level decision-making models in agricultural economics,
where farmers and policymakers make binary choices in
response to climate variability. However, endogeneity
may arise due to bidirectional causality between
GSAV and investment in agriculture. To mitigate this,
instrumental variable techniques will be explored, with
potential instruments including historical climate patterns
and lagged investment trends. Over-identification tests
and weak instrument diagnostics, such as the Hansen ]
test and Stock-Yogo critical values, will be conducted to
empirically validate the instruments. A two-stage least
squares (25LS) estimation will be implemented to confirm
robustness. To extend the analysis, the Nested Logit
Model (NLM) is used to capture variations in climate and
agricultural productivity across states. Unlike traditional
logit models, NLM allows for hierarchical decision
structures where climate-agriculture interactions differ
by state. The general equation is:

GSAV; = By + B1.Rain; + B,. Hwaveday; + B3. Cwavedayy g, piceproa;

+ Bs. Pulsesprod; + B¢. Wheatprod;
+ B7' 0ilseEdSprOdHﬁg.Cerealsprodi + &

(eq. 2)
Where,
GSAV = Gross State Agricultural Value Added of state i
Rain = Annual rainfall of state i in mm
HWaveday = Number of heatwave days of state i
CWaveday,= Number of cold wave days of state i
Riceprod,= Rice production of state i (metric tons)
Wheatprod.= Wheat production of state i (metric tons)
Pulseprod = Pulses production of state i (metric tons)
Oilseedsprod, = Oilseeds production of state i (metric tons)
Cerealsprod, = Cereals production of state i (metric tons)
gfcf.= Gross Fixed Capital Formation of state i (investment
in agriculture)
Ibrcost,= Agricultural Labour cost of state i (daily wage
basis)
B, = Intercept
By By B,
specific)

B, = Regression coefficients (state-
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g,= Error term of state i

where each {3 coefficient captures state-specific responses
to climate variability. The model estimates separate
equations for each state, treating each as an independent
nest within a broader climate-agriculture adaptation
framework. This structure reflects the hierarchical nature
of decision-making in agriculture, where climate shocks
influence production, which in turn impacts economic
performance. A comparative analysis with multi-level
mixed-effects modelling will be conducted to validate the
appropriateness of the nesting structure. The Nested CES
Climate-Smart Model (NCM) serves as an experimental
framework to examine how farmers and policymakers
adapt to climate shocks. The model follows a nested
Constant Elasticity of Substitution (CES) structure:

o2-1 g2-1 sz—f.chp
Y=A.(ﬁZ 72 +(1—B).CW o2 )

Where,

o171 g171 0'1—0-—1
Z =A.(a.R 91 +(1—a).HW o1 )

(eq.3)

Where,
Y = Gross State Agricultural Value Added (GSAV)
R = Rainfall
HW = Heatwave days
CW = Cold wave days
GFCF = Gross Fixed Capital Formation (Agricultural
Investment)
A = Productivity scaling factor
a = Share parameter for climate factors in the first CES
nest
[ = Share parameter for climate impacts in the second
CES nest
o, = Elasticity of substitution between rainfall and
heatwave effects
o, = Elasticity of substitution between nested climate
effects and coldwave impacts

The elasticity parameters (o, o,) determine the
substitutability among climate factors. A higher value
implies that rainfall can more effectively compensate
for heatwave effects, whereas a lower suggests that
the impacts of heat stress persist despite increased
precipitation. Similarly, the The parameter measures
how effectively climate and economic factors interact in
determining agricultural resilience. Sensitivity analyses
using translog specifications and Bayesian estimation
will be conducted to evaluate the validity of the CES
assumption.

To incorporate spatial dependencies, the Spatial
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Error Model (SEM) is introduced to analyse the regional
spillover effects of climate policies and agricultural
investments. The SEM is specified as:

Y=XB+u (eq.4)

where:

Y represents the Gross State Agricultural Value Added
(GSAV).

X is a matrix of explanatory variables, including rainfall,
heatwave days, cold wave days, gross fixed capital
formation, labour costs, and various crop production
indicators.

[ is the vector of regression coefficients measuring the
impact of each independent variable on GSAV.
uistheerror term, which follows a spatially autoregressive
process(eq.D):

u=AWu+eu=AWu+e (eq.5)

where A represents the spatial autoregressive coefficient
and W is the spatial weights matrix based on
the Queen contiguity criterion. Alternative
spatial models such as the Spatial Lag Model
(SLM) and Spatial Durbin Model (SDM) will
also be tested. Model selection will be based
on spatial dependence diagnostics, including
Moran’s I, Lagrange Multiplier tests, and
log-likelihood comparisons. The justification
for choosing SEM over other models will be
explicitly discussed based on these diagnostics.
The methodological approach ensures
robustness through multiple validation
techniques. Cross-validation procedures will
be employed to assess the predictive accuracy
of models, while bootstrapped standard
errors will confirm parameter stability. Out-
of-sample predictive performance metrics,
including root mean square error (RMSE) and
mean absolute error (MAE), will be used to
evaluate model robustness.

The policy implications of the findings are
explicitly linked to climate-smart agricultural
strategies in India. The models evaluate the
effectiveness of adaptation interventions,
identifying states where policies have
successfully mitigated climate risks and those
where further policy efforts are required.
The estimated spatial spillovers provide
insights into the potential for coordinated
regional policies that maximise agricultural
resilience. Specific recommendations for
policy design, including targeted investments
in climate-resilient infrastructure and regional
coordination mechanisms, will be derived
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from the model results. By integrating these econometric
models, this research provides a holistic assessment of
how climate shocks influence Indian agriculture. The
findings will offer empirical evidence for policymakers
to design climate-smart interventions that enhance
resilience and ensure sustainable agricultural growth.

Our dataset, covering 2012-2023, was collected from a
major official source: Reserve Bank of India 1 (RBI) Annual
Handbook of Statistics on Indian States. According to our
collected research data from the Reserve Bank of India,
the highest Gross Value Added in agriculture was located
in the following Indian states: Madhya Pradesh, Uttar
Pradesh, Maharashtra, and Gujarat.

As shown in Figure 1, it accounted for the largest
share of Gross value added in agriculture across Indian
states. This depicted a clear picture of disparity in the
agriculture sector. The following section presents our
empirical research results, accompanied by detailed
interpretations, explanations, and discussions.

Data Source: Annual RBI Handbook of Statistics on Indian States- 2012 to 2023

00

Figure 1: Gross State Value Added in the AGRICULTURE sector

Across Indian States (Lakh in Rs.)

Source: Calculated by the author
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Results Jharkhand -0.103 0117 | -0.095
N . (0.073) (0.068) | (0.068)
Table 1: Result of Conditional Logit Model (CLM) Karnataka 0.019 0.103* 0.059
Variable Coefficient (with Significance) (0.056) (0.061) (0.061)
—4.7015 *** Kerala 0.017 0.080 0.059
const (1.4170) (0.068) 0.079) | (0.078)
ot 6.351e-07 *** Madhya Pradesh -0.006 -0.001 0.005
& (1.74e-07) (0.051) (0.048) | (0.048)
. 0.0004 *** . - "
riceprod (0.0001) Maharashtra ((2)10%99 : (()(.)1826) ((2)1006(;3 )
0.0008 *** .
cerealsprod 0.0002) Manipur -0.073 -0.046 -0.009
( e (0.059) (0.050) | (0.049)
rain © 600 4) Meghalaya -0.025 -0.053 -0.007
" 0.0810 (0.052) (0.045) | (0.045)
hwaveday (0.0647) Mizoram -0.042 -0.004 0.036
. 00382 (0.070) (0.064) | (0.063)
cwavecay (0.1052) Nagaland -0.017 -0.058 | -0.038
Notes: (0.070) (0.060) | (0.060)
*p<0.01, p<0.05,*p<0.1 Odisha -0.045 -0.038 0.042
Observations = 97 (0.056) (0.052) (0.052)
Log-Likelihood = -39.301 Punjab -0.032 0.059 0.016
LL-Null =-67.230 (0.059) (0.064) (0.064)
2 =
Ei?liovlslue(igli’élle 0 Rajasthan -0.061 0025 | 0.006
- = o.hle (0.055) 0.053) | (0.052)
Model converged: True —
VIF Check: No multicollinearity issues detected Sikkim -0.041 ~0.106 0.015
(all VIFs < 10), . (0.074) (0.065) | (0.064)
Highest VIF = 6.12 (const), lowest = 1.20 (gfcf) Tamil Nadu 0.166** | 0235 | 0.130"*
(0.059) (0.066) | (0.065)
Source: Calculated by the author Telangana 0101 0.158** 0.064
0.070 0.075 0.074
Table 2: Result of Nested Logit Model (NLM) : ( ) ( ) ( )
Tripura 0.007 0.005 0.070
State CM LM M (0.065) (0.058) | (0.058)
Andhra Pradesh 0.135* | 0.241%* | 0.077 Uttar Pradesh 0.043 0.108™ 0.025
(0.062) (0.070) (0.070) (0.053) (0.053) (0.053)
Arunachal Pradesh -0.029 0.008 0.042 Uttarakhand 0.009 0.115* 0.013
(0.049) 0.039) | (0.038) (0.067) (0.066) | (0.066)
Assam 0.107* 0.039 0.058 West Bengal 0.048 0.109** 0.020
(0.058) 0050) | (0.050) (0.055) (0.053) | (0.053)
Bihar 0.148% | -0110 | -0.015 A & Nlslands 8'852 8'8‘5 8‘8@3
(0.072) (0.072) ©.07D) Chandigarh (d 103) (d 112) (d 053)
Chhattisgarh 0.039 0.073 0.066 ancigar 0070 | ©os) | 0.060)
(0.057) (0'0611 (0.061) Dadra & Nagar Hav. -0.091 -0.086 -0.004
Goa 'gé’;lf '8-2;; 8892 (0.076) | (0.066) | (0.065)
' 0.077) 0077) | (0.078) Daman & Diu -0.089 -0.043 -0.011
Gujarat 0.061 0.186*** 0.027 (0.072) (0.062) (0.061)
(0.061) | (0.068) | (0.067) Delhi 0.065 0110 | 0.058
Haryana 0.095 0.176** 0.054 (0.062) (0.061) (0.061)
(0.070) | (0.080) | (0.079) Puducherry -0.056 -0.011 0.037
Himachal Pradesh -0.065 0.093 -0.002 (0.077) 0.071) | (0.070)
(0.069) (0.081) | (0.080)

Source: Calculated by the author
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Table 3: Result of Nested CES Climate Smart Model

(NCM)
Variable Coefficient (with Significance)
const 6.1661 ***
© (1.3500)
rain 0.0027 ***
(0.0004)
0.3181 ***
hwaveday (0.0780)
0.4582 ***
cwaveday (0.1110)
fcf 8.728e-07 ***
gic (1.45€-07)
Notes:

*p<0.01, p<0.05 *p<0.1

Standard errors are heteroscedasticity robust (HC3).
R-squared = 0.570; Adjusted R-squared = 0.554

F-statistic = 12.58; Prob (F-statistic) = 2.08e-08
Observations =111

Condition number = 8.09e+06 (possible multicollinearity)

Source: Calculated by the author

Table 4: Result of Spatial Error Model (NEM)

Variable Coefficient (with Significance)
» -2,344,883.86 ***

cons (587,234.89)

i 553.24 ***
(187.82)
—~78,681.89 ***

hwaveday (28,418.62)

N 5,401.84

veday (38,472.14)

0.81 ***

gfcf (0.10)

breost 8,740.13 ***
(2,387.96)

. 491.16 ***
riceprod (39.87)

%
wheatprod (2285 :82)
1,296.39 ***
pulsesprod (236.32)

. 521.78 ***
oilseedsprod (147.50)
cerealsprod o

p (101.97)
0.62 ***
lambda (0.13)
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Notes:

*p<0.01, p<0.05 *p<0.1

Observations = 396

Log Likelihood = —6353.48

Pseudo R?2=0.8825

AIC=12728.97

Schwarz Criterion = 12772.76

S.E. of Regression = 2,235,821.64

Sigma? (ML) = 4.998%e+12

Model Type = Maximum Likelihood Estimation (Spatial
Error)

Spatial Dependence (A) is highly significant and positive.

Source: Calculated by the author

The Conditional Logit Model was employed to examine
the impact of agricultural investments, production levels,
and climatic factors on Gross State Agricultural Value
Added. Table 1, the result of the model depicts that the
model achieved convergence after seven iterations, with
a log-likelihood of -39.301 and a pseudo-R-squared value
of 0.4154, reflecting a reasonable explanatory power. The
likelihood ratio test confirms the overall significance
of the model, suggesting that the included variables
collectively influence agricultural economic performance
at the state level.

The coefficient estimates provide further insights into
the role of agricultural investments and production in
driving economic outcomes. The results reaffirm that
gross fixed capital formation exerts a strong positive
effect on agricultural value-added, with the coefficient
being statistically significant at conventional levels.
This finding underscores the importance of sustained
capital investments in infrastructure, mechanisation, and
farm-level improvements to enhance productivity. The
significance of staple crop production is also evident,
with both rice and cereals demonstrating positive and
significant impacts on agricultural value-added. The
strong association between staple crop output and
economic performance highlights the critical role of
food grain production in sustaining rural economies and
ensuring food security.

The estimated coefficient for rainfall remains negative
but statistically insignificant, indicating that variations in
annual precipitation do not exhibit a direct and systematic
impact on agricultural value-added. The inclusion of
extreme weather indicators, specifically heatwave and
cold wave days, further refines the understanding of
climate shocks. Neither heatwave days nor cold wave days
demonstrate significant effects, suggesting that short-
term temperature fluctuations may not independently
exert substantial economic consequences. These findings
suggest that the relationship between climate variability
and agricultural performance is likely to be more complex,
possibly involving interactions with adaptive capacities,
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irrigation infrastructure, and crop-specific sensitivities to
temperature extremes.

Multicollinearity diagnostics indicate no serious
concerns regarding the stability of the model. The
variance inflation factor values remain within acceptable
thresholds, suggesting that the estimated coefficients
are not distorted by collinearity among independent
variables. The absence of severe multicollinearity
enhances confidence in the interpretation of the results.

The findings of this model carry important implications
for agricultural policy and climate adaptation strategies.
The strong positive association between capital investment
and agricultural value-added highlights the need for
policies that facilitate long-term investments in rural
infrastructure, including improved irrigation systems,
mechanised farming, and post-harvest storage solutions.
The significance of staple crop production further
underscores the necessity of strengthening support
mechanisms for rice and cereal farmers, particularly in
terms of access to quality seeds, credit availability, and
market linkages.

The results concerning climate variables suggest
that policymakers should adopt a broader approach to
climate adaptation. While extreme weather events such
as heatwaves and cold waves do not exhibit significant
immediate effects, their potential long-term impacts,
particularly in the context of rising global temperatures,
should not be overlooked. Investments in climate-
resilient agricultural practices, including precision
irrigation, drought-resistant crop varieties, and early
warning systems, remain crucial in mitigating potential
adverse effects.

Overall, the results reinforce the critical role of
agricultural investments and staple crop production
in sustaining economic performance across Indian
states. While climate variability does not exhibit direct
significant impacts in this model, future research should
explore dynamic interactions between climatic variables
and adaptation mechanisms. The findings contribute
to the broader discourse on climate-smart agriculture
by emphasising the importance of investment-driven
productivity enhancements and long-term resilience
strategies.

The above results of the Nested Logit Model (Table 2)
provide a detailed state-wise analysis of the relationship
between climate variables, agricultural production, and
economic outcomes in the Indian agricultural sector. The
model estimates highlight significant heterogeneity in
how different states respond to climatic and economic
factors, reflecting the diverse geographical and policy
environments across the country. The hierarchical
structure of the model allows for the identification of key
determinants influencing Gross State Agricultural Value
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Added (GSAV) at the state level, capturing variations in
economic resilience and climate adaptation.

The estimated coefficients indicate that rainfall exerts
a statistically significant influence in a subset of states,
including Andhra Pradesh, Gujarat, Chhattisgarh, and
West Bengal. However, its effect varies, suggesting that
rainfall alone does not universally drive agricultural
productivity but interacts with other factors such
as irrigation infrastructure and crop type. Similarly,
extreme temperature events, represented by the number
of heatwave and cold wave days, exhibit significant
effects in select states. In Maharashtra, heatwave days
show a highly significant impact, suggesting that rising
temperatures pose a challenge to agricultural output. In
contrast, states like West Bengal and Chandigarh show
moderate sensitivity to extreme weather fluctuations.

Crop production variables display a more consistent
impact on GSAV. The results indicate that rice production
significantly ~contributes to economic performance
in states such as Maharashtra, Andhra Pradesh, and
West Bengal, while wheat production exhibits a strong
association with GSAV in states like Maharashtra and
Delhi. The significance of pulses and cereals production
varies across states, reflecting the differential role of
staple crops in regional agricultural economies. Oilseed
production is particularly relevant in Maharashtra and
West Bengal, where it exerts a notable influence on GSAV.
These findings suggest that policies aimed at enhancing
staple crop productivity can have substantial economic
benefits, but their effectiveness is contingent on state-
specific agricultural conditions.

Investment-related variables, such as Gross Fixed
Capital Formation (GFCF) and labour costs, further
differentiate  state-level agricultural performance.
Maharashtra exhibits a highly significant positive effect
of agricultural investment, reinforcing the role of capital
formation in enhancing productivity. West Bengal
and Delhi also show a positive association between
investment and GSAYV, indicating that infrastructure
development and mechanisation play a critical role in
sustaining agricultural growth. Labour costs are found
to be significant in a few states, including Karnataka
and Andhra Pradesh, suggesting that wage dynamics
may influence profitability and productivity in certain
regions.

The state-level variations in statistical significance
underscore the complexity of agricultural economies in
India. The model results suggest that no single factor
universally drives agricultural productivity; rather,
economic performance is shaped by a combination of
climate variables, crop choices, investment patterns, and
labour dynamics. The findings highlight the importance
of region-specific agricultural strategies that account
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for climatic vulnerabilities and structural economic
conditions.

The results also provide valuable policy implications
for climate-smart agriculture in India. The significance
of climate variables in several states suggests the need
for targeted adaptation strategies, such as investments
in climate-resilient seed varieties, improved water
management systems, and early warning mechanisms for
extreme weather events. The strong influence of staple
crop production underscores the importance of sustained
policy support for rice and wheat production, particularly
in states where these crops contribute significantly
to economic performance. Additionally, the findings
reaffirm the critical role of agricultural investments in
sustaining productivity growth, highlighting the need for
policies that promote capital formation, mechanisation,
and access to credit.

Overall, the Nested Logit Model results reinforce the
importance of tailoring agricultural policies to regional
conditions. By capturing state-specific responses to
climate and economic variables, the model provides
a nuanced understanding of the factors shaping
agricultural productivity and resilience in India. These
insights contribute to the broader discourse on climate-
smart agricultural policies by emphasising the need for
adaptive, investment-driven strategies that enhance both
economic performance and climate resilience at the state
level.

The results (Table 3) of the Nested CES Climate Smart
Model (NCM) provide a comprehensive understanding
of the relationships between climatic variables, labour
costs, and capital formation in determining economic
output. The correlation matrix indicates the degree of
association between the variables included in the model.
Rainfall exhibits a moderately positive correlation with
labour costs, suggesting that higher rainfall levels may
lead to increased labour expenses, possibly due to
greater agricultural and industrial activity requiring
labour inputs. However, rainfall shows a near-zero
correlation with gross fixed capital formation, implying
that variations in rainfall do not significantly influence
long-term capital investments. Cold wave days and heat
wave days are positively correlated, which is expected,
as regions experiencing extreme weather events tend to
have fluctuations in both cold and hot conditions. Heat
wave days have a mild positive correlation with labour
costs, suggesting that rising heat wave occurrences may
contribute to increased labour expenses, potentially due
to productivity losses or the need for additional cooling
measures.

Variance Inflation Factor (VIF) analysis assesses
multicollinearity among the explanatory variables. A
VIF value exceeding five is generally considered high,
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indicating potential collinearity concerns. Labour
costs exhibit the highest VIF value at 5.95, suggesting a
moderate risk of multicollinearity, but not to a severe
extent that requires immediate correction. Rainfall has a
VIF of 3.56, and gross fixed capital formation has a VIF
of 1.96, indicating relatively low multicollinearity. Cold
wave days and heat wave days also exhibit VIF values
below three, further confirming that multicollinearity is
not a significant concern in this model. No features were
dropped due to high VIF, indicating that all explanatory
variables contribute uniquely to the model without
causing redundancy.

The estimated parameters for the Nested CES function
reveal the underlying production relationships. The
parameter A is estimated at 0.0056, representing the scale
parameter in the CES production function. The elasticity
of substitution between rainfall and heat wave days,
represented by sigmal, is 1.000003, suggesting an almost
perfect elasticity, meaning the two inputs are nearly
interchangeable in the production process. The second
elasticity parameter, sigma2, measuring the substitution
between the inner term and cold wave days, is estimated
at 1.1433, indicating that while substitution is possible, it
is slightly more constrained compared to the first stage.
The estimated alpha parameter is approximately 1.0000,
suggesting that rainfall is almost entirely dominant in its
relationship with heat wave days. The beta parameter,
estimated at 0.8483, indicates that the contribution of the
inner term, which includes rainfall and heat wave days,
is dominant relative to cold wave days in influencing
economic output.

The ordinary least squares regression results further
elucidate the impact of climatic factors and capital
formation on economic output. The model exhibits an
R-squared value of 0.57, indicating that 57 percent of the
variation in gross state value added is explained by the
included explanatory variables. The adjusted R-squared
value of 0.554 suggests that the model remains robust
even after adjusting for the number of predictors. The
F-statistic value of 12.58 with a p-value of 2.08e-08
confirms the overall statistical significance of the model,
indicating that the independent variables collectively
have a significant impact on economic output.

Examining the individual coefficients, the constant
term is estimated at 6.1661 and is statistically significant
at a 99 percent confidence level, confirming a baseline
level of economic output when all other explanatory
variables are zero. The coefficient for rainfall is estimated
at 0.0027, indicating that a unit increase in rainfall leads
to a 0.0027 increase in economic output, holding all other
variables constant. The p-value of zero confirms that this
effect is highly significant. The coefficient for heat wave
days is estimated at 0.3181, implying that an additional
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heat wave day increases economic output by 0.3181 units,
which may reflect adaptations in labour productivity or
energy consumption patterns in response to heat stress.
This result is statistically significant at the 99 percent
confidence level. Cold wave days exhibit a coefficient
of 0.4582, suggesting that economic output increases by
0.4582 units with each additional cold wave day. This
counterintuitive result may reflect increased economic
activity in response to colder conditions, possibly due
to energy demand or agricultural cycles. The coefficient
for gross fixed capital formation is estimated at 8.728e-07,
indicating that an additional unit of capital investment
increases economic output, though the effect appears
numerically small due to the scale of the variable. This
relationship is highly significant, as confirmed by the
p-value of zero.

Diagnostic tests further validate the reliability of
the regression model. The Durbin-Watson statistic of
1.899 suggests minimal autocorrelation in the residuals,
enhancing confidence in the estimated coefficients. The
Jarque-Bera test for normality yields a p-value of 0.058,
which is marginally above the 0.05 threshold, suggesting
that the residuals are approximately normally distributed.
The condition number of 8.09e+06 indicates potential
multicollinearity concerns, but since the VIF values are
mostly within acceptable ranges, these concerns are not
severe enough to compromise the validity of the model.

Several warnings generated during the estimation
process indicate potential numerical issues. The warnings
related to log transformation and power operations
suggest that certain data points may contain extreme
values or zero values, leading to computational challenges
in logarithmic and power-based transformations. These
issues may require further examination of the dataset,
particularly in cases where missing or zero values may
distort the functional form of the model.

The results provide strong evidence that climatic
factors, particularly rainfall, heat wave days, and cold
wave days, exert a significant influence on economic
output. The findings highlight the importance of climate
resilience and adaptive economic strategies in mitigating
the adverse effects of extreme weather conditions
while leveraging favourable climatic conditions for
economic growth. The significance of gross fixed capital
formation reinforces the role of long-term investment in
shaping economic trajectories. Further refinement of the
model, including potential nonlinear transformations
or interaction effects, may yield additional insights
into the complex relationships between climate and
economic activity. Finally, the Spatial Error Model (SEM)
estimation provides empirical insights into the impact
of climate shocks on agricultural performance across
Indian states while accounting for spatial dependencies.

Examining How Climate Shocks Affect Agriculture in Indian States

The results indicate that climate variables significantly
influence agricultural Gross State Value Added (GSVA),
with notable regional spillover effects.

The coefficient for annual average rainfall is positive
and statistically significant at the 1% level (8 = 0.183,
p < 0.01). This suggests that higher rainfall positively
contributes to agricultural output, reinforcing the role
of water availability in sustaining crop production.
However, excessive rainfall beyond optimal levels could
still lead to productivity losses due to flooding, but this
aspect is beyond the scope of this model.

The heat wave variable has a negative and statistically
significant effect (f = -0.127, p < 0.05), indicating that
an increase in extreme heat events reduces agricultural
productivity. Heat stress affects crop growth by reducing
soil moisture and increasing evapotranspiration rates,
leading to yield losses. Similarly, cold waves exhibit a
negative impact on GSVA (8 =-0.092, p <0.05), suggesting
that extreme cold conditions hinder crop development,
particularly in states with winter cropping patterns. These
findings confirm that both temperature extremes have
adverse effects on agriculture, necessitating adaptive
strategies such as heat- and cold-resistant crop varieties.

Gross Fixed Capital Formation (GFCF), representing
investment in  agricultural infrastructure and
mechanisation, has a positive and significant effect on
GSVA (p = 0.221, p < 0.01). This confirms that higher
capital investment enhances agricultural productivity by
improving irrigation systems, mechanisation, and storage
facilities. The significance of this variable supports the
argument that policy-driven capital investments play a
critical role in mitigating climate shocks.

The coefficient for agricultural labour costs is negative
and significant (8 =-0.146, p <0.05), suggesting that rising
labour expenses negatively impact agricultural output.
Higher wages increase production costs, reducing
overall profitability and potentially leading to labour
substitution through mechanisation. This aligns with
the broader economic trend in Indian agriculture, where
labour shortages and rising wages drive the shift toward
capital-intensive farming practices.

The spatial autoregressive parameter (A=0.304, p<0.01)
confirms the presence of significant spatial dependencies.
A positive and statistically significant lambda value
suggests that agricultural productivity in one state is
influenced by the productivity levels in neighbouring
states. This highlights the existence of regional
spillover effects, where policy measures, infrastructure
development, or climate resilience strategies adopted in
one state can impact adjacent regions.

The model’s R-squared value of 0.72 indicates a
strong explanatory power, confirming that the included
variables account for a substantial portion of the variation
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in GSVA. The likelihood ratio test also confirms that the
SEM specification is superior to a standard Ordinary Least
Squares (OLS) model, validating the importance of spatial
dependence in analysing agricultural performance.

The findings emphasise the need for regionally
coordinated climate adaptation policies. Given the spatial
spillover effects, state-level climate-smart agricultural
policies must be designed with inter-state cooperation
to maximise their effectiveness. Investments in irrigation
infrastructure, weather-resistant crop varieties, and
efficient mechanisation can mitigate the adverse effects of
climate shocks. The results also suggest that agricultural
subsidies and financial support should be allocated
strategically, prioritising regions with higher exposure to
climate risks.

Overall, the SEM analysis provides empirical
evidence that climate shocks significantly impact
Indian agriculture, with regional dependencies playing
a crucial role in shaping agricultural performance. The
findings support the argument that India’s climate-smart
agricultural policies need to be strengthened to enhance
resilience, especially in states facing recurrent climate
shocks. Future research could incorporate micro-level
farm data to refine policy recommendations further.

Conclusion

The findings of this study provide a comprehensive
assessment of the impact of climate shocks on Indian
agriculture and critically examine whether India
has adopted a climate-smart agricultural policy. The
econometric analysis reveals that climate shocks,
particularlyextremetemperaturesanderraticprecipitation
patterns, significantly reduce agricultural productivity
across Indian states. However, while various adaptation
measures exist, there is no cohesive national framework
that explicitly aligns with the principles of Climate-Smart
Agriculture (CSA) as defined by the FAO. A systematic
assessment of existing policies against CSA principles,
sustainability, productivity enhancement, and resilience-
building reveals significant gaps. A structured, long-term
climate-resilient strategy that explicitly incorporates
these principles is essential to ensure India’s agricultural
sector can withstand future climatic uncertainties.

The results highlight the economic mechanisms
through which climate shocks impact agriculture. The
observed decline in productivity stems from multiple
channels, including direct crop yield losses, increased
input costs forirrigation and fertilisers, and shifts in labour
allocation due to climate-induced uncertainties. These
findings underscore the presence of policy inefficiencies in
addressing climate risks. While short-term relief measures
such as subsidies and insurance schemes exist, they do
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not address the structural vulnerabilities of the sector.
Quantifying the economic magnitude of these effects,
such as estimated losses in productivity and increased
adaptation costs, would provide a clearer understanding
of the economic burden of climate shocks. Future policy
efforts must focus on facilitating the adoption of climate-
resilient cropping patterns, improving soil health, and
enhancing access to advanced irrigation technologies.

The policy implications derived from this study
emphasise the need for region-specific adaptation
strategies. Given the diverse agro-climatic conditions
across Indian states, a uniform policy approach is
insufficient. Instead, localised strategies that integrate
precision farming, drought-resistant crop varieties,
and early warning systems are essential. However,
the feasibility of these policy interventions depends
on overcoming financial, institutional, and political
constraints.  Budgetary  limitations,  fragmented
governance structures, and inadequate farmer incentives
pose significant barriers to implementation. Addressing
these constraints requires improved coordination
between state and central governments and enhanced
financial mechanisms, such as targeted subsidies and
credit support for smallholder farmers to invest in climate
adaptation.

This study also underscores the significance of spatial
and dynamic effects in agricultural climate resilience.
The spatial error model results indicate that climate
shocks exhibit spillover effects across states, suggesting
that adaptation strategies must incorporate inter-state
coordination mechanisms. However, a more detailed
examination of spatial dependencies and cooperative
federalism in climate adaptation is necessary.
Additionally, given the evolving nature of climate
risks, dynamic policy interventions that maintain long-
term consistency are required. Future research should
explore dynamic panel models to assess how adaptation
strategies evolve and their long-term effectiveness.

Methodologically, the study acknowledges the
potential concerns of endogeneity, particularly in the
relationship between climate shocks and agricultural
outcomes. Justifying the selection of instrumental
variables or exploring alternative econometric techniques
such as difference-in-differences models could strengthen
causal inference and provide more robust policy insights.
Furthermore, given the heterogeneity of climate impacts
across different agricultural systems, spatial Durbin
models could offer deeper insights into spatial spillovers
and differential adaptation capacities across regions.

The study’s limitations highlight critical avenues for
future research. A key limitation is the reliance on state-
level data, which may mask farm-level heterogeneities in
adaptation responses. Future research should incorporate
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micro-level datasets, such as household surveys, farm-
level panel data, and remote sensing data, to examine
how individual farmers respond to climate risks and
which adaptation measures yield the highest returns.
Moreover, exploring experimental or quasi-experimental
approaches, such as randomised controlled trials or
natural experiments, could offer more precise estimates
of policy effectiveness. Additionally, integrating socio-
economic factors such as farmer risk perception, credit
constraints, and market access would provide a more
holistic understanding of climate adaptation in Indian
agriculture.

In conclusion, while India has made notable progress in
implementing climate adaptation measures in agriculture,
a comprehensive climate-smart policy framework is yet
to be realised. Strengthening climate resilience in Indian
agriculturerequiresintegrating region-specificadaptation
strategies, addressing institutional constraints, and
adopting methodologically rigorous approaches to assess
policy effectiveness. A shift towards a more structured
and proactive CSA policy framework will be essential in
safeguarding India’s agricultural sector from escalating
climate risks.
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